Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Brain Behav ; 14(3): e3457, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38450910

RESUMEN

INTRODUCTION: Repeated exposure to cocaine induces microglial activation. Cocaine exposure also induces a release of high mobility group box-1 (HMGB1) from neurons into the extracellular space in the nucleus accumbens (NAc). HMGB1 is an important late inflammatory mediator of microglial activation. However, whether the secretion of HMGB1 acts on microglia or contributes to cocaine addiction is largely unknown. METHODS: Rats were trained by intraperitoneal cocaine administration and cocaine-induced conditioned place preference (CPP). Expression of HMGB1 was regulated by viral vectors. Activation of microglia was inhibited by minocycline. Interaction of HMGB1 and the receptor for advanced glycation end products (RAGE) was disrupted by peptide. RESULTS: Cocaine injection facilitated HMGB1 signaling, together with the delayed activation of microglia concurrently in the NAc. Furthermore, the inhibition of HMGB1 or microglia activation attenuated cocaine-induced CPP. Box A, a specific antagonist to interrupt the interaction of HMGB1 and RAGE, abolished the expression of cocaine reward memory. Meanwhile, the inhibition of HMGB1-RAGE interaction suppressed cocaine-induced microglial activation, as well as the consolidation of cocaine-induced memory. CONCLUSION: All above results suggest that the neural HMGB1 induces activation of microglia through RAGE, which contributes to the consolidation of cocaine reward memory. These findings offer HMGB1-RAGE axis as a new target for the treatment of drug addiction.


Asunto(s)
Cocaína , Proteína HMGB1 , Animales , Ratas , Núcleo Accumbens , Microglía , Receptor para Productos Finales de Glicación Avanzada , Cocaína/farmacología
2.
Nat Commun ; 14(1): 7971, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042894

RESUMEN

Ketamine produces rapid antidepressant effects at sub-anesthetic dosage through early and sustained activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), however, the exact molecular mechanism still remains unclear. Transmembrane AMPAR regulatory protein-γ8 (TARP-γ8) is identified as one of AMPAR auxiliary subunits, which controls assemblies, surface trafficking and gating of AMPARs. Here, we show that ketamine rescues both depressive-like behaviors and the decreased AMPARs-mediated neurotransmission by recruitment of TARP-γ8 at the postsynaptic sites in the ventral hippocampus of stressed male mice. Furthermore, the rapid antidepressant effects of ketamine are abolished by selective blockade of TARP-γ8-containing AMPAR or uncoupling of TARP-γ8 from PSD-95. Overexpression of TARP-γ8 reverses chronic stress-induced depressive-like behaviors and attenuation of AMPARs-mediated neurotransmission. Conversely, knockdown of TARP-γ8 in excitatory neurons prevents the rapid antidepressant effects of ketamine.


Asunto(s)
Ketamina , Ratones , Animales , Masculino , Ketamina/farmacología , Receptores AMPA/fisiología , Neuronas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Antidepresivos/farmacología
3.
Cell Discov ; 9(1): 90, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644025

RESUMEN

Dysfunctional autophagy and impairment of adult hippocampal neurogenesis (AHN) each contribute to the pathogenesis of major depressive disorder (MDD). However, whether dysfunctional autophagy is linked to aberrant AHN underlying MDD remains unclear. Here we demonstrate that the expression of nuclear receptor binding factor 2 (NRBF2), a component of autophagy-associated PIK3C3/VPS34-containing phosphatidylinositol 3-kinase complex, is attenuated in the dentate gyrus (DG) under chronic stress. NRBF2 deficiency inhibits the activity of the VPS34 complex and impairs autophagic flux in adult neural stem cells (aNSCs). Moreover, loss of NRBF2 disrupts the neurogenesis-related protein network and causes exhaustion of aNSC pool, leading to the depression-like phenotype. Strikingly, overexpressing NRBF2 in aNSCs of the DG is sufficient to rescue impaired AHN and depression-like phenotype of mice. Our findings reveal a significant role of NRBF2-dependent autophagy in preventing chronic stress-induced AHN impairment and suggest the therapeutic potential of targeting NRBF2 in MDD treatment.

4.
Adv Sci (Weinh) ; 10(22): e2301110, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37325895

RESUMEN

Hippocampal circuitry stimulation is sufficient to regulate adult hippocampal neurogenesis and ameliorate depressive-like behavior, but its underlying mechanism remains unclear. Here, it is shown that inhibition of medial septum (MS)-dentate gyrus (DG) circuit reverses the chronic social defeat stress (CSDS)-induced depression-like behavior. Further analysis exhibits that inhibition of gamma-aminobutyric acidergic neurons in MS projecting to the DG (MSGABA+ -DG) increases the expression of platelet-derived growth factor-BB (PDGF-BB) in somatostatin (SOM) positive interneurons of DG, which contributes to the antidepressant-like effects. Overexpression of the PDGF-BB or exogenous administration of PDGF-BB in DG rescues the effect of chronic stress on the inhibition of neural stem cells (NSCs) proliferation and dendritic growth of adult-born hippocampal neurons, as well as on depressive-like behaviors. Conversely, knockdown of PDGF-BB facilitates CSDS-induced deficit of hippocampal neurogenesis and promotes the susceptibility to chronic stress in mice. Finally, conditional knockdown platelet-derived growth factor receptor beta (PDGFRß) in NSCs blocks an increase in NSCs proliferation and the antidepressant effects of PDGF-BB. These results delineate a previously unidentified PDGF-BB/PDGFRß signaling in regulating depressive-like behaviors and identify a novel mechanism by which the MSGABA+ -DG pathway regulates the expression of PDGF-BB in SOM-positive interneurons.


Asunto(s)
Neurogénesis , Ácido gamma-Aminobutírico , Ratones , Animales , Becaplermina/farmacología , Neurogénesis/fisiología , Ácido gamma-Aminobutírico/farmacología , Antidepresivos/farmacología , Giro Dentado/fisiología
5.
Biol Psychiatry Glob Open Sci ; 3(2): 187-196, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37124348

RESUMEN

Pharmacological and anatomical evidence suggests that abnormal glutamatergic neurotransmission may be associated with the pathophysiology of depression. Compounds that act as NMDA receptor antagonists may be a potential treatment for depression, notably the rapid-acting agent ketamine. The rapid-acting and sustained antidepressant effects of ketamine rely on the activation of AMPA receptors (AMPARs). As the key elements of fast excitatory neurotransmission in the brain, AMPARs are crucially involved in synaptic plasticity and memory. Recent efforts have been directed toward investigating the bidirectional dysregulation of AMPAR-mediated synaptic transmission in depression. Here, we summarize the published evidence relevant to the dysfunction of AMPAR in stress conditions and review the recent progress toward the understanding of the involvement of AMPAR trafficking in the pathophysiology of depression, focusing on the roles of AMPAR auxiliary subunits, key AMPAR-interacting proteins, and posttranslational regulation of AMPARs. We also discuss new prospects for the development of improved therapeutics for depression.

6.
Mol Psychiatry ; 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914810

RESUMEN

Recent studies based on animal models of various neurological disorders have indicated that mitophagy, a selective autophagy that eliminates damaged and superfluous mitochondria through autophagic degradation, may be involved in various neurological diseases. As an important mechanism of cellular stress response, much less is known about the role of mitophagy in stress-related mood disorders. Here, we found that tumor necrosis factor-α (TNF-α), an inflammation cytokine that plays a particular role in stress responses, impaired the mitophagy in the medial prefrontal cortex (mPFC) via triggering degradation of an outer mitochondrial membrane protein, NIP3-like protein X (NIX). The deficits in the NIX-mediated mitophagy by TNF-α led to the accumulation of damaged mitochondria, which triggered synaptic defects and behavioral abnormalities. Genetic ablation of NIX in the excitatory neurons of mPFC caused passive coping behaviors to stress, and overexpression of NIX in the mPFC improved TNF-α-induced synaptic and behavioral abnormalities. Notably, ketamine, a rapid on-set and long-lasting antidepressant, reversed the TNF-α-induced behavioral abnormalities through activation of NIX-mediated mitophagy. Furthermore, the downregulation of NIX level was also observed in the blood of major depressive disorder patients and the mPFC tissue of animal models. Infliximab, a clinically used TNF-α antagonist, alleviated both chronic stress- and inflammation-induced behavioral abnormalities via restoring NIX level. Taken together, these results suggest that NIX-mediated mitophagy links inflammation signaling to passive coping behaviors to stress, which underlies the pathophysiology of stress-related emotional disorders.

7.
Anal Chim Acta ; 1239: 340691, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628759

RESUMEN

Bile acids (BAs) are a class of vital gut microbiota-host cometabolites, and they play an important role in maintaining gut microbiota-host metabolic homeostasis. Very recently, a new mechanism of BA anabolic metabolism mediated by gut microbiota (BA-amino acid conjugation) has been revealed, which provides a perspective for the research on BA metabolism and gut metabolome. In this study, we established a polarity-switching multiple reaction monitoring mass spectrometry-based screening method to mine amino acid-conjugated bile acids (AA-BAs) derived from host-gut microbiota co-metabolism. In addition, a retention time-based annotation strategy was further proposed to identify the AA-BA isomers and epimers. Using the developed methods, we successfully screened 118 AA-BA conjugates from mouse and human feces, 28 of them were confirmed by standards, and 62 putatively identified based on their predicted retention times. Moreover, we observed that the levels of most AA-BAs were significantly downregulated in the feces of chronic sleep deprivation mice, suggesting that the AA-BA metabolism was closely related to the physiological state of the host.


Asunto(s)
Aminoácidos , Ácidos y Sales Biliares , Ratones , Humanos , Animales , Aminoácidos/análisis , Cromatografía Liquida , Espectrometría de Masas , Ácidos y Sales Biliares/análisis , Heces/química
8.
Biosens Bioelectron ; 219: 114821, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279821

RESUMEN

RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Inosine is one of the most prevalent modifications in RNA and dysregulation of inosine is correlated with many human diseases. Herein, we established an acrylonitrile labeling-mediated elongation stalling (ALES) method for quantitative and site-specific detection of inosine in RNA from biological samples. In ALES method, inosine is selectively cyanoethylated with acrylonitrile to form N1-cyanoethylinosine (ce1I) through a Michael addition reaction. The N1-cyanoethyl group of ce1I compromises the hydrogen bond between ce1I and other nucleobases, leading to the stalling of reverse transcription at original inosine site. This specific property of stalling at inosine site could be evaluated by subsequent real-time quantitative PCR (qPCR). With the proposed ALES method, we found the significantly increased level of inosine at position Chr1:63117284 of Ino80dos RNA of multiple tissues from sleep-deprived mice compared to the control mice. This is the first report on the investigation of inosine modification in sleep-deprived mice, which may open up new direction for deciphering insomnia from RNA modifications. In addition, we found the decreased level of inosine at GluA2 Q/R site (Chr4:157336723) in glioma tissues, indicating the decreased level of inosine at GluA2 Q/R site may serve as potential indicator for the diagnosis of glioma. Taken together, the proposed ALES method is capable of quantitative and site-specific detection of inosine in RNA, which provides a valuable tool to uncover the functions of inosine in human diseases.

9.
Biol Psychiatry ; 89(6): 615-626, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33190845

RESUMEN

BACKGROUND: Deficiency in neuronal structural plasticity is involved in the development of major depressive disorder. TWIST1, a helix-loop-helix transcription factor that is essential for morphogenesis and organogenesis, is normally expressed at low levels in mature neurons. However, it is poorly understood what role TWIST1 plays in the brain and whether it is involved in the pathophysiology of depression. METHODS: Depressive-like behaviors in C57BL/6J mice were developed by chronic social defeat stress. Genetic and pharmacological approaches were used to investigate the role of the TWIST1-miR-214-PPAR-δ signaling pathway in depressive-like behaviors. Molecular biological and morphological studies were performed to define the molecular mechanisms downstream of TWIST1. RESULTS: The expression of TWIST1 was positively correlated with depressive behaviors in humans and mice. Chronic stress elevated TWIST1 expression in the medial prefrontal cortex of mice, which was reversed by fluoxetine treatment. While the overexpression of TWIST1 increased susceptibility to stress, the knockdown of TWIST1 prevented the defective morphogenesis of dendrites of pyramidal neurons in layer II/III of the medial prefrontal cortex and alleviated depressive-like behaviors. Mechanistically, this prodepressant property of TWIST1 was mediated, at least in part, through the repression of miR-214-PPAR-δ signaling and mitochondrial function, which was also mimicked by genetic and pharmacological inhibition of PPAR-δ. CONCLUSIONS: These results suggest that TWIST1 in the medial prefrontal cortex mediates chronic stress-induced dendritic remodeling and facilitates the occurrence of depressive-like behavior, providing new information for developing drug targets for depression therapy.


Asunto(s)
Trastorno Depresivo Mayor , Animales , Depresión , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Corteza Prefrontal , Estrés Psicológico , Factores de Transcripción , Proteína 1 Relacionada con Twist
10.
Biol Psychiatry ; 88(5): 415-425, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32220499

RESUMEN

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) are widely prescribed antihypertensive agents. Intriguingly, case reports and clinical trials have indicated that ACEIs, including captopril and lisinopril, may have a rapid mood-elevating effect in certain patients, but few experimental studies have investigated their value as fast-onset antidepressants. METHODS: The present study consisted of a series of experiments using biochemical assays, immunohistochemistry, and behavioral techniques to examine the effect and mechanism of captopril on depressive-like behavior in 2 animal models, the chronic unpredictable stress model and the chronic social defeat stress model. RESULTS: Captopril (19.5 or 39 mg/kg, intraperitoneal injection) exerted rapid antidepressant activity in mice treated under the chronic unpredictable stress model and mice treated under the chronic social defeat stress model. Pharmacokinetic analysis revealed that captopril crossed the blood-brain barrier and that lisinopril, another ACEI with better blood-brain barrier permeability, exerted a faster and longer-lasting effect at a same molar equivalent dose. This antidepressant effect seemed to be independent of the renin-angiotensin system, but dependent on the bradykinin (BK) system, since the decreased BK detected in the stressed mice could be reversed by captopril. The hypofunction of the downstream effector of BK, Cdc42 (cell division control protein 42) homolog, contributed to the stress-induced loss of dendritic spines, which was rapidly reversed by captopril via activating the mTORC1 (mammalian target of rapamycin complex 1) pathway. CONCLUSIONS: Our findings indicate that the BK-dependent activation of mTORC1 may represent a promising mechanism underlying antidepressant pharmacology. Considering their affordability and availability, ACEIs may emerge as a novel fast-onset antidepressant, especially for patients with comorbid depression and hypertension.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Hipertensión , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Bradiquinina , Captopril/farmacología , Humanos , Hipertensión/tratamiento farmacológico , Ratones , Serina-Treonina Quinasas TOR
11.
Addict Biol ; 25(2): e12739, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31056833

RESUMEN

Cocaine is a common abused drug that can induce abnormal synaptic and immune responses in the central nervous system (CNS). High mobility group box 1 (HMGB1) is one kind of inflammatory molecules that is expressed both on neurons and immune cells. Previous studies of HMGB1 in the CNS have largely focused on immune function, and the role of HMGB1 in neurons and cocaine addiction remains unknown. Here, we show that cocaine exposure induced the translocation and release of HMGB1 in the nucleus accumbens (NAc) neurons. Gain and loss of HMGB1 in the NAc bidirectionally regulate cocaine-induced conditioned place preference. From the nucleus to the cytosol, HMGB1 binds to glutamate receptor subunits (GluA2/GluN2B) on the membrane, which regulates cocaine-induced synaptic adaptation and the formation of cocaine-related memory. These data unveil the role of HMGB1 in neurons and provide the evidence for the HMGB1 involvement in drug addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Proteína HMGB1/genética , Memoria/efectos de los fármacos , Neuronas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Recompensa , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/fisiopatología , Modelos Animales de Enfermedad , Masculino , Núcleo Accumbens/fisiopatología , Ratas , Ratas Sprague-Dawley
12.
Biol Psychiatry ; 86(2): 131-142, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31076080

RESUMEN

BACKGROUND: The basolateral amygdala (BLA) has been widely implicated in the pathophysiology of major depressive disorder. A-kinase anchoring protein 150 (AKAP150) directs kinases and phosphatases to synaptic glutamate receptors, controlling synaptic transmission and plasticity. However, the role of the AKAP150 in the BLA in major depressive disorder remains poorly understood. METHODS: Depressive-like behaviors in C57BL/6J mice were developed by chronic restraint stress (CRS). Mice received either intra-BLA injection of lentivirus-expressing Akap5 short hairpin RNA or Ht-31, a peptide to disrupt the interaction of AKAP150 and protein kinase A (PKA), followed by depressive-like behavioral tests. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptor (AMPAR)-mediated miniature excitatory postsynaptic currents were recorded by whole-cell patch-clamp techniques. RESULTS: Chronic stress exposure induced depressive-like behaviors, which were accompanied by an increase in total and synaptic AKAP150 expression in the BLA. Accordingly, CRS facilitated the association of AKAP150 with PKA, but not of calcineurin in the BLA. Intra-BLA infusion of lentivirus-expressing Akap5 short hairpin RNA or Ht-31 prevented depressive-like behaviors and normalized phosphorylation of serine 845 and surface expression of AMPAR subunit 1 (GluA1) in the BLA of CRS mice. Finally, blockage of AKAP150-PKA complex signaling rescued the changes in AMPAR-mediated miniature excitatory postsynaptic currents in depressive-like mice. CONCLUSIONS: These results suggest that AKAP150-PKA directly modulates BLA neuronal synaptic strength, and that AKAP150-PKA-GluA1 streamline signaling complex is responsible for CRS-induced disruption of synaptic AMPAR-mediated transmission and depressive-like behaviors in mice.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Complejo Nuclear Basolateral/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Depresión/genética , Depresión/psicología , Estrés Psicológico/genética , Estrés Psicológico/psicología , Proteínas de Anclaje a la Quinasa A/efectos de los fármacos , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Depresión/etiología , Suspensión Trasera/psicología , Ratones , Ratones Endogámicos C57BL , Proteínas/farmacología , Receptores AMPA/biosíntesis , Receptores AMPA/genética , Restricción Física , Estrés Psicológico/complicaciones , Natación/psicología , Transmisión Sináptica
13.
Neuropharmacology ; 137: 256-267, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29221793

RESUMEN

Mefloquine (MFQ) is widely used for the treatment of malaria clinically. Apart from antimalarial effect, psychiatric side effects such as depression and anxiety of MFQ have been reported. Interestingly, MFQ is also known as a broad-spectrum pannexin-1 (Panx1) inhibitor. Panx1 is a new gap junction channel in the brain which mediates efflux of adenosine triphosphate (ATP). Although exogenous ATP has been known to produce a potential antidepressant-like effect, little is known about the role of Panx1 in pathophysiology of depression, especially the depression induced by administration of MFQ. Here, we used the chronic social defeat stress (CSDS) model and found a decrease in the expression and function of Panx1 in the medial prefrontal cortex (mPFC) of susceptible mice. Furthermore, pharmacological blockade of Panx1 in the mPFC with carbenoxolone (CBX) (100 mM) or 10Panx (100 µM) was sufficient to induce depressive-like behaviors and increase vulnerability to stress in mice, which were prevented by preconditioning with ATP (25 µM). Finally, systemic and intral-mPFC injection of MFQ both inhibited the activity of Panx1 and induced depressive-like and anxiety behaviors in mice with sub-threshold social defeat stress. Indeed, the behavioral abnormalities induced by MFQ were prevented by preconditioning with ATP in the mPFC. In conclusion, our study demonstrates a role of the Panx1 channel in chronic stress and MFQ-induced depressive-like and anxiety behaviors, which may provide a novel molecular mechanism for psychiatric side effects of MFQ.


Asunto(s)
Antimaláricos/efectos adversos , Conexinas/metabolismo , Depresión/inducido químicamente , Depresión/metabolismo , Mefloquina/efectos adversos , Proteínas del Tejido Nervioso/metabolismo , Corteza Prefrontal/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Ansiedad/inducido químicamente , Ansiedad/metabolismo , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Conexinas/administración & dosificación , Dominación-Subordinación , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Resiliencia Psicológica/efectos de los fármacos , Estrés Psicológico/metabolismo
14.
CNS Neurosci Ther ; 20(5): 411-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24479764

RESUMEN

AIMS: Epileptic seizures are well-known neurological complications following stroke, occurring in 3% of patients. However, the intrinsic correlation of seizures with stroke remains largely unknown. Hydrogen sulfide (H2 S) is a gas transmitter that may mediate cerebral ischemic injury. But the role of H2 S in seizures has not been understood yet. We examined the effect of H2 S on seizure-like events (SLEs) and underlying mechanisms. METHODS AND RESULTS: Pentylenetetrazole (PTZ)- and pilocarpine-induced rat epileptic seizure models were tested. Low-Mg(2+) /high-K(+) - and 4-aminopyridine (4-AP)-induced epileptic seizure models were examined using patch-clamp recordings in brain slices. It was found that NaHS aggravated both PTZ- and pilocarpine-induced SLEs in rats, while both low-Mg(2+) /high-K(+) - and 4-AP-induced SLEs were also exacerbated by NaHS in brain slices, which may be due to its regulation on the voltage-gated sodium channel, N-methyl-D-aspartic acid receptor (NMDAR), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) function. Furthermore, these effects were reversed by blocking voltage-gated sodium channel, NMDAR, and AMPAR. CONCLUSIONS: These results suggest a pathological role of increased H2 S level in SLEs in vivo and in vitro. Enzymes that control H2 S biosynthesis could be interesting targets for antiepileptic strategies in poststroke epilepsy treatment.


Asunto(s)
Corteza Entorrinal/fisiopatología , Sulfuro de Hidrógeno/metabolismo , Neuronas/fisiología , Convulsiones/fisiopatología , 4-Aminopiridina , Animales , Modelos Animales de Enfermedad , Corteza Entorrinal/efectos de los fármacos , Deficiencia de Magnesio , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Pentilenotetrazol , Pilocarpina , Potasio/metabolismo , Ratas Sprague-Dawley , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/inducido químicamente , Técnicas de Cultivo de Tejidos , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA